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Abstract In a traditional least-squares adjustment of
parameters to the Very Long Baseline Interferometry
(VLBI) observations, typically tropospheric as well as
clock parameters are determined in the form of contin-
uous piece-wise linear functions with a given temporal
resolution. As the VLBI observations are not equidis-
tant, but on the contrary exhibit gaps of sometimes sev-
eral hours, singularities arise due to unresolvable pa-
rameters inside these gaps. For this reason, it is com-
mon practice to constrain the respective parameters in
the solution. In this paper we analyze the singularities
that arise within the geodetic VLBI data analysis by
means of a Singular Value Decomposition of the Ja-
cobian matrix. Furthermore, we show the ramifications
of traditional constraining. Finally, we present an alter-
native approach for optimizing the least-squares solu-
tion by omitting the constraints within the VLBI solu-
tion and performing a Tikhonov regularization. In this
way, we obtain a minimally regularized solution, which
leads to reliable target parameters without being influ-
enced by constraints on auxiliary parameters such as
clocks or troposphere.
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1 Introduction

Geodetic Very Long Baseline Interferometry (VLBI)
observations are used for the determination of funda-
mental geophysical parameters, such as, e.g., Earth ori-
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entation parameters (EOPs), as well as the celestial and
terrestrial reference frames (CRF and TRF). This pa-
rameter estimation is typically done in a classical least-
squares adjustment. Together with the mentioned target
parameters, auxiliary parameters have to be estimated
with high temporal resolutions even below one hour.
In most cases, these are parameters for clock synchro-
nization as well as tropospheric parameters.

In a routine parameter estimation process, a single
solution set-up is chosen to process a lot of VLBI ses-
sions. Unfortunately, not all sessions permit estimation
of the entire set of parameters, leading to instabilities
of the least-squares solution, which are typically cured
by adding constraint equations, whether needed or not.
Basically, there are two reasons for these singularities.
On the one hand, radio telescopes might miss obser-
vations due to various reasons, e.g., too strong winds;
data gaps of up to several hours can appear. On the
other hand, some observing network geometries are not
sensitive for all of the parameters.

Even in the next generation VLBI Global Observ-
ing System (VGOS, [4]) era, where large global net-
works will operate with high data rates, the constrain-
ing still might be an issue. Especially, when automatic
processing is considered due to the huge number of ob-
servations, this will become a crucial point which has
to be handled with care.

2 Least-Squares Adjustment and
Diagnosis by Singular Value
Decomposition

In most of the VLBI analysis packages, an ordinary
least-squares approach [3] is chosen to estimate the
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necessary parameters X from the observations b. The
basic idea of the least-squares adjustment is to mini-
mize the sum of the squared residuals r to deal with the
overdetermined linear or linearized equation system

b+r=Ax (1

where the matrix A represents the linear(ized) relation-
ship between observations and parameters, i.e., the Ja-
cobian matrix A = db/dx. In other words, a solution
has to be found, where the gradient of the residuals
vanishes. This directly leads to the solution via the nor-
mal equations
x=(ATZ,JA) 'ATE, )b, ©)
where a weighting is included based on the inverted
covariance matrix of the observations X ;.
Applying a Cholesky decomposition [1] on the
weight matrix
L, =R"R, 3)
leads to a full de-correlation and, thus, to a modified
Jacobian matrix and observation vector

X=RA, £=Rb )
= x=(A"R'RA) 'A"R"Rb )
= (X"X) ' XE. (6)

Finally, a Singular Value Decomposition (SVD, [1]) of
the transformed Jacobian matrix can be performed
X =USV” (7

leading to a new representation of the solution [1]

T
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Obviously, problems arise if (numerically) zero sin-
gular values s; exist, because in this case the null space
of the Jacobian matrix does not disappear, i.e., some
parameters are not indeterminable. Thus, the SVD can
be used as a tool to diagnose the numerical stability of
the solution. If a singular value s; is numerically zero,
the largest entries of the corresponding right singular
vector v; indicate weakly or undefined parameters. Fur-
thermore, this singular vector is a base vector of the
null space.

3 Effects of Standard Constraints

Typically, a stabilization of the least-squares adjust-
ment can be achieved by constraining the solution,
i.e., by adding some pseudo-observations which have
sufficient information in the null space. Thus, a con-
straint matrix C with corresponding standard devia-
tions can be constructed and added to the normal equa-
tions (Eq. 2)
x=(ATE,JA+CTEC)ATE D 9)
as the constraints and the original observations are un-
correlated and the actual pseudo-observations are zero.
If the solution should be solved and analyzed by means
of SVD, the constraining can be equally achieved by
extending the corresponding matrices and vectors

(A (b (X 0
(@) v () (5 2) o

It is important to note that the constraints do not have
to be the basis of the null space. They only need to have
components in the null space.

In routine VLBI data analysis, three types of con-
straints are relevant. These are offset constraints, rate
constraints, and no net translation/no net rotation con-
ditions to define the geodetic datum. In this paper, we
focus on offset constraints which force a parameter to
be zero where a column of the constraint matrix has the
form

Ci=(0...010...).

Furthermore, rate constraints
Ci=(0...1-10...)

are investigated, which force the difference between
two parameters to be zero. To overcome the datum de-
ficiency, station and quasar positions are simply not es-
timated. Thus, only the EOPs are estimated as well as
clock parameters (quadratic polynomial and continu-
ous piece-wise linear functions (CPWLF) with a reso-
lution of 1 h), zenith wet delays (ZWDs, 1 h CPWLF),
and tropospheric gradients (1 d CPWLF). All auxiliary
parameters are set up per station; however, the clock
parameters for one station need to be fixed to realize a
reference.
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Fig. 1 Height differences for the station TIGOCONC with two
different weights for the troposphere constraints. Note that larger
differences (> 100 mm) are excluded.

In mass processing of VLBI sessions (batch solu-
tions), a set of offset and rate constraints are always
applied regardless of whether the null space of the Ja-
cobian matrix exists or not. Thus, often constraining
information is added although it is not necessary. To
evaluate this procedure, we performed two different so-
lutions:

1. with standard constraints

® OzWD,u =40ps/h

L4 Ggmd,,_/fm =1 mm, Ograd
—14

®  Oclockrgre = 10

=2mm/d

rate

2. with modified weights for the constraint equations

® OZWD,ye = 10 ns/h

d Ggr“doffset =0 mmi, o-gradmte =0 mm/d
—14

®  GOclockygre = 10

for VLBI sessions between 2000.0 and 2016.0. With
the modified set-up, about 15% of the solutions failed,
indicating that the constraints have been necessary.
However, for the other sessions differences appear up
to the decimeter level (see Figure 1). Even for the cur-
rently best VLBI dataset from the continuous VLBI
campaign 2014, height differences of up to 7mm ap-
pear (not shown here) indicating that the effects are
also relevant in the VGOS era. However, it has to be
noted that the differences are typically not significant
when compared to the standard deviations of the pa-
rameters.

4 Development of an Alternative Approach

When investigating the least-squares solution without
any constraint, always a rank deficiency is present. As
can be seen in Figure 2, the null space of the Jacobian
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Fig. 2 Singular values (left) and null space of the Jacobian ma-
trix (right). The rank deficiency of seven is related to eight ses-
sions in this experiment, and the basis vectors of the null space
are dominated by clock polynomial parameters (one station is the
reference station).
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Fig. 3 Singular values (top) for the session 020CT16XA and the
residuals for ALGOPARK from the standard solution (bottom)
representing the temporal distribution of the observations.

matrix is dominated by the linear and quadratic clock
polynomial parameters. Thus, eliminating the clock
polynomials from the functional model of the least-
squares solution leads to a regular solution for a well-
observed session. In this case, a solution without any
constraints leads to a reasonable result with a weighted
root mean squared (WRMS) post-fit residual of 27.2 ps,
which is 0.3 ps below the WRMS of the standard con-
strained solution with full clock set-up. However, for
another session the approach fails (see Figure 3) due
to observation gaps for the station ALGOPARK. These
gaps lead to an over-parameterization and, thus, to a
singularity. However, none of the parameters are en-
tirely undefined. As a consequence, simply dropping
individual parameters is not a feasible approach.
Unfortunately, for this session there are a few ob-
servations in every parameterization interval causing a
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Fig. 4 L-curve, i.e., plot of the solution norm w.r.t. residual
norm, which is used to determine the regularization parameter
depending on the solution representing the corner.

bad condition of the least-squares problem. To over-
come this without the need for constraining, a regu-
larization can be performed. Here, the Tikhonov regu-
larization [5] has been chosen, where the squared pa-
rameter norm is minimized in addition to the squared
residual norm

min { | Ax —b|[3 +2A%[x[3} (11
The Tikhonov parameter A is considered to balance
between smoothing the estimates and minimizing the
residuals. In the actual solution, the regularization pa-
rameter is used to filter out the impact of the small sin-
gular values

52
_ 1
fi - )bi2+5i27 (12)
n llT
Xfiltered = Zfzi’sg Vi. (13)
=1 Si

Thus, the singularity of the initial approach is elimi-
nated. However, the choice of A is crucial for the suc-
cess of this approach.

There are various possibilities for choosing the
Tikhonov parameter. We make use of the so-called
L-curve [2] (see Figure 4), which is a plot of the size
of the regularized solution versus the size of the cor-
responding residual norm for all valid regularization
parameters. To obtain this curve, 200 solutions are
performed where the minimal and the maximal A are
chosen according to the singular values

lmin = max[smina € Smax]

(14)

MAnax = Smax

with a tiny value €, which is sixteen times the next posi-
tive representable value after zero. The optimal regular-
ization is the one in the lower left corner of the L-shape
as this represents minimal smoothing of the parameters
and minimal residual norm.

This procedure, i.e., a totally unconstrained solu-
tions with hourly clocks and ZWDs as well as daily
tropospheric gradients and the full set of EOPs, has
been applied to the continuous VLBI campaign 2002.
For sessions where rank deficiencies appear, parame-
ters without any observations have been eliminated. If
further ill-conditioning has been present, the Tikhonov
regularization parameter has been determined from the
L-curve and used for the regularized solution. The re-
sulting UT1-TAI time series is depicted in Figure 5.
Slight differences can be seen between our new so-
lution and the standard approach. However, these are
only indirect changes of one of the target parameters
due to modified handling of the auxiliary parameters.
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Fig. 5 UT1-TAI for the standard (black) and the new regularized
approach without constraints (gray).

In Figure 6 the effects on ZWDs are shown. On the one hand it
can be noted that fixing the clock polynomials has only a minor
effect on the ZWDs.

This step is one of the necessary changes of our
new approach, as it eliminates extremely high correla-
tions between the clock parameters and, thus, allows
for neglecting the constraint equations. On the other
hand it can be seen from Figure 6 that the parameters
which are affected by the regularization have no phys-
ical meaning as they are far too large. However, they
can easily be declared as outliers if ZWDs should be
investigated. Thus, the new approach can be consid-
ered successful as no constraints are necessary for the
regularized solutions. The resulting time series of tar-
get parameters are, therefore, not influenced by model
assumptions.
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Fig. 6 ZWDs for the standard solution (black circles), a solution without clock polynomials but with constraints (black triangles w/
dashed lines) and the new regularized approach without constraints (gray diamonds). The entire times series (left), clearly shows
the outliers for regularized parameters. The zoom to a reasonable range of the parameters (right), however, shows that the other

parameter estimates are resonable.

5 Conclusions

We analyzed the effect of routinely applied constraint
equations in VLBI data analysis. The reason for these
constraints, which are usually applied in the form of
pseudo-observations weighted by standard deviations,
are implied to overcome deficiencies in the solution
set-up. For instance, the observing geometry might not
allow for estimating tropospheric gradients if the lo-
cal hemispheres above any telescope are not regularly
sampled. Furthermore, gaps in the observations can
lead to some over-parameterization.

We have shown that changing the standard devia-
tions of the tropospheric parameters can lead to station
position changes at the cm-level. Even for the currently
most precise set of observations from the continuous
VLBI campaign 2014, changes of the station positions
of up to 7 mm have been detected.

Furthermore, we demonstrated that it is not pos-
sible to simply remove the constraints even for ses-
sions where almost perfect data distribution is given.
The reason is the set-up for the clock synchroniza-
tion where second degree polynomials are estimated
simultaneously with CPWLF leading to high mathe-
matical correlations. By removing the clock polynomi-
als, still a reasonable solution can be derived. Subse-
quently, it is possible to eliminate all constraint equa-
tions if the data distribution is homogeneous over a
session. If this is not the case, still rank deficiencies
appear. With our modified solution approach imple-
menting the Tikhonov regularization we, however, are
able to deal with such situations without applying con-
straints. In this way, we derive time series of target pa-

rameters that are not influenced by model assumptions.
Parameters which are strongly affected by the filtering
process as they represent the null space of the Jacobian
matrix are derived with unrealistic estimates. However,
these could be handled as outliers in, e.g, an analysis
of ZWDs.

Thus, we presented a new approach for geodetic
VLBI data analysis. This approach is not based on any
constraint equations and, therefore, permits a set-up for
the VGOS era where the equation system is stabilized
only in situations where it is necessary.
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